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Alternative results derived on a microscopic basis for the mode-mode 
coupling kinetic equations are shown to be identical. It is also emphasized 
that nonlinear kinetic equations for the gross variables describing the 
system are only suggested but not implied by the corresponding equations 
obeyed by their dynamical variables. Finally an equivalent closed form for 
the renormalized transport coefficients is shown to hold in mode-mode 
coupling theory. 
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1, iNTRODUCTION 

The enormous success of mode-mode coupling theory (1~ in giving an adequate 
picture of how transport coefficients behave in the vicinity of critical points 
has motivated some work on its microscopic foundations. In particular, 
Kawasaki has proposed a derivation of the kinetic equations for the set of 
phase space functions which are associated with the corresponding gross 
variables. (1'2~ A similar approach has been followed by using a systematic set 
of approximations on the exact kinetic equation satisfied by such phase space 
functions. (3~ However, the immediate step of going from this description to 
another one in terms of the gross or mesoscopic variables is not very clear, 
nor is it straightforward. (4~ This paper has two objectives. One is to show 
trivially that the kinetic equations for the phase space functions are identical. 
This will avoid any source of confusion when looking at the two apparently 
different results. The second one is much deeper. We would like to emphasize 

1 Department of Physics, Faculty of Sciences, Universidad Nacional Autdnoma de 
Mtxico, Mexico City, Mexico. 
Miembro del Colegio Nacional. On sabbatical leave from UAM--Iztapalapa, Mexico. 

19 

0022-4715/79/0100-0019503.0010 �9 1979 Plenum Publishing Corporation 



20 L.S. Garcia-Colin 

that from a given kinetic equation in phase space, the corresponding equation 
in the gross variable space does not follow automatically. It also appears that 
the renormalization formula for the transport coefficients can be written 
according to the particular manner in which this latter equation is regarded. 
This will, we hope, cast some light on our present understanding of this theory 
at a more fundamental level. 

2. DERIVATION OF M O D E - M O D E  COUPLING EQUATIONS 

We shall start by stressing the fact that the dynamical state of a many- 
body system will be described by a set of dynamical variables, e.g., phase 
space functions, a subset of which denoted by {A~(r)} constitutes the "slowly" 
varying variables. The gross, mesoscopic or coarse-grained variables {a~} are 
defined by the numerical values of these dynamical functions. The former set 
obeys exact equations of motion in P-space, whereas, as has been emphasized 
several times before, (4-6~ the a's form a set of stochastic variables whose time 
evolution has to be dealt with correspondingly. Now, without burdening the 
reader with unnecessary tedious algebra, which can be found in the references, 
it is sufficient to point out that the equation of motion for the state vector 
A = (A1, A2 .... ), which is clearly Liouville's equation, may be uniquely trans- 
formed into a different form which resembles that of, but is not quite, a 
Langevin equation. If the vector A corresponds to the slowly varying variables, 
then the idea of the decomposition is to obtain an equation with a "system- 
atic" non-Markovian term linear in A, plus a fluctuating " r a n d o m "  term 
which arises solely from the rapidly varying variables, this term acting, 
presumably, as a " random force." Furthermore, this force is related to the 
"memory"  term which appears in the systematic motion through a generaliza- 
tion of the ordinary fluctuation-dissipation theorem as it appears in ordinary 
Brownian motion. It must be clear that, although appealing, this transforma- 
tion is purely a mathematical one and cannot be identified from the physical 
point of view with a description of a real system by means of a stochastic 
process. Examples of these results, appropriate to our further discussion, are 
Eq. (5.6) of Ref. 1 and Eq. (32) of Ref. 3. 

In particular, we now want to show that these two results lead to the 
same equation for the set {Ad upon which the mode-mode coupling theory 
in its usual context is based. In fact, if we take Eq. (5.6) of 1 and assume that 
the process is Markovian, namely that the memory kernel in the systematic 
term is instantaneous, we get that 

dA~(t) ~ dt = v~({A}) + g~ql({A(t)}) ~ {geq({A(t)}) 

• L~l({A(t)})} + f(t) (1) 
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where, by definition, geq({A(t)}) is the equilibrium distribution at 
time t 

g~({A(t)}) = f dr p~q(F) 8[A(F, t) - a] (2) 

and all the other quantities appearing in (1) are defined in Refs. 1 and 3. 
Equation (1) is also explicitly written in this way in earlier work. (2) However, 
the corresponding result given by Eq. (84) in Ref. 3 appears to be different 
from Eq. (1). To show that this is not the case we take Eq. (32) of Ref. 3, 
which is exact, and by identifying [G(b, 0)] with geq({b}), which is its definition, 
using Eq. (46) of Ref. 3, which is the Markovian approximation on Lk~(a, s), 
and carrying out the elementary integrations involved, we arrive at Eq. (1) 
with/~ij =- L~j.a 

We now come to the core of this paper. The standard way of arriving at 
the nonlinear kinetic equation for the gross variables (a~} is by simply regard- 
ing the {At} as the set of random variables {a,} and simply using (1) in a space 
by substituting the A's by the a's. (1'7) We wish to stress very clearly the fact 
that this is a nontrivial assumption whose consequences are not quite straight- 
forward. This problem is extensively dealt with in Ref. 4, so that unnecessary 
repetitions of algebraic steps will be avoided. The crucial point is that the 
condition {A, = a~ for all i} determines the hypersurface 8[A(F) - a] in F 
space whose motion is determined uniquely by Liouville's equation through 
the motion of all the microscopic states contained therein and which are 
compatible with the coarse-grained state determined by the a's. Of course, 
this motion could also be determined by the exact equations of motion of the 
a's, which are clearly unknown because of their own nature, namely, they are 
regarded as stochastic variables. This implies that, if we intuitively or prag- 
matically propose some dynamical scheme in a space, the motion of this 
hypercell will be modeled by it in the sense that the values of the set {At) will 
be determined by the values of the set {a~} at any time t. Furthermore, the 
a space as such has a status of its own so that any equation of motion that 
we propose has to be written in terms of operators, scalar products, etc. 
defined in that space, not in phase space. (5,m This now brings us to the nature 
of Kawasaki's assumption (7) (see Ref. 1, p. 193). If  we assume, it cannot be 
otherwise, that the a's are described by a stochastic Gaussian Markovian 
process such that Eq. (1) is obeyed, then the fluctuating term fj.(t) has to be 
different from the one appearing in the equation for At(t) in P space, because 
the projector Pa involved in it has to be defined in a space, not in F space. 
Now, going along with this assumption, it is also clear that the dynamics in 

a Equation (1) is identical to Eq. (86) of Ref. 3. 
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P space is no longer determined by Eq. (1) itself. This arises from the fact 
that trivially 

Aj( t )  = f aj 3[A(F, t) - a] da (3) 

which when applied to Eq, (1) in a space [see Eq. (5.17) in Ref. 1] leads back 
formally to the same equation except that the fluctuating force is given by 

L(t) = fz~(t)  ~[A(F, t) - a] da (4) 

wherefj ~ is the fluctuating term in a space. Thatfj( t)  # fs~(t) has been clearly 
pointed out in the literature5 ~) Of course, since in the practical applications 
of mode-mode coupling this force disappears when computing the correlation 
functions for the a's, which requires, by the way, that (fj~(t)ak(0)) = 0, its 
specific form has no importance whatsoever. 

Moreover, Kawasaki's assumption could be interpreted in a different, 
but equally valid, manner, As it was shown in Ref. 3, Eq. (1) is completely 
equivalent to the Markovian form for the MFS (Mori-Fujisaka-Shige- 
matsu) (s~ dynamical operator which is explicitly written in Eq. (51) of Ref. 3. 
Now one can take up the same philosophy as in Ref. 4 and assume that the 
dynamics in a space will be determined by the corresponding operator A, 
and that it is linear in the a's 

aj(t)  = eAta~(O) (5) 

where A is given by (53) of Ref. 3. Then the whole machinery worked out in 
Section Il l  of Ref. 4 can be applied step by step (8~ to derive an equation of 
motion for the set {a~) which will formally look like Eq. (3.10) of Ref. 4. 
When this result is used together with Eq. (3) to obtain the corresponding 
dynamics in F space, then we find that, as a consequence of the nonlinear 
interactions among the gross variables, such dynamics simulates the exact one, 
provided that the corresponding transport coefficients are "renormalized," 
namely if L~y is an element of the "exact"  Onsager matrix, then 

L,j(io)) = 2L~j + ~b,j(ioJ) (6) 

where/~j is the bare transport coefficient, as it appears in Eq. (1), ~b~j(i~o) is 
given by 

f ~j(i~o) = <fp*(O)fj~(t)>e - ~ t  dt (7) 

and the "fluctuating force" f~  defined in a space contains only the nonlinear 
interactions among the a's. This brings us to a very interesting situation. On 
the one hand the a space version of Eq. (1) when subject to the standard 
perturbation method as described in Ref. 1 yields renormalized expressions 
for the transport coefficients in the critical region which are in astonishing 
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agreement with experiment. On the other hand one can interpret the same 
assumption in the sense that the dynamics of the a variables is determined by 
the same operator that describes the time evolution of the phase space func- 
tions, or equally well, the hypersurface 3[A(F) - a] in F space. If  this 
approach is taken we are led to a "renormalization" scheme which has a 
closed form in a space and from which, in principle, the behavior of the 
transport coefficients could be predicted. Unfortunately, very little work has 
been done along these lines. Since the operator A is completely equivalent to 
the operator that acts on the A's in Eq. (1), the two methods are strictly 
equivalent. However, in one case one proceeds to apply perturbative methods 
to the nonlinear kinetic equation for the a's to get the renormalization formula 
for the transport coefficients, whereas in the second method this renormaliza- 
tion appears when one studies the "modeled"  dynamics in P space obtained 
through Eq. (5). Mori ~9~ has applied this method to study some systems close 
to critical points and finds results which agree with dynamic scaling, but it 
is clear at this point that much more work is needed to weigh the advantages 
of one method over the other one. 

As a last remark, we would also like to point out that another way of 
approaching the mode-mode coupling theory is by casting the kinetic equa- 
tion for the gross variables in terms of a stochastic equation for their 
probability distribution function g(a, t). ~1"3"~ 

It has been discussed previously ~1~ how exact equations of motion for 
this distribution function can be obtained from Liouville's equation, and have 
the following structure, 

dg(a, t)/dt = Z(a, t)g(a, t) (8) 

where the operator Z(a, t) may be written in several identical ways. In 
particular, the so called generalized Fokker-Planck form for Z(a, t) [see Eq. 
(10) in Ref. 1] is useful for our discussion. Indeed, if in this equation we 
introduce three approximations, namely (a) we assume that the process is 
diagonal, Kk~(a, b; s) = Lkz(a, s)3(a -- b), (b) we assume that it is Markovian, 
Lkz(a, t ) =  2Lk~(a)3(t), and (c) we assume that goq(b) is Gaussian, then, 
carrying through the elementary algebra involved, we come out with the 
result that 

dg(a, t)ldt = - i~  [v,((a}) + j~ LuFs({a))]g(a , t) 

] 
,.j L . ,  t)j  g( (9) 

which is the form quoted in the literature< v as the mode-mode coupling 
approximation for g(a, t). It is worthwhile to emphasize the difference in 
nature of Eqs. (1) and (9), since the latter follows from an exact result for the 
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distribution function of the numerical values of the slowly varying variables. 
The first moments of this distribution, say 

= f a,(t)g(a, t) da (10) 

would correspond to the macroscopic variables of the system and their 
corresponding equations ought to be equivalent to those that describe the 
behavior of hydrodynamic variables near critical points. (~1~ This connection 
remains, to the author 's  knowledge, rather unexplored. 

3. C O N C L U D I N G  R E M A R K S  

As was shown above, the nonlinear kinetic equations for the gross 
variables used in mode-mode  coupling theory are indeed assumptions about 
the dynamics in a space which are at most suggested by the corresponding 
equations satisfied by their own phase space functions. The other result worth 
emphasizing is that if one models the dynamics in P space through a Markovian 
operator in a space, this induces a renormalization of the transport  coefficients 
which can be expressed in a closed form in terms of the nonlinear interactions 
among the gross variables. Since this is equivalent to Kawasaki 's  conventional 
treatment of  the renormalization scheme, it could be advantageous to explore 
its applicability, for instance, before doing perturbation expansions. Some 
applications along these lines have been suggested by Mori. C9~ 
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